SMARTCHAIN: Towards Innovation - driven and smart solutions in short food supply chains

SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

D6.4 Implementation of the
inventory of innovations,
related interactive tools

Work Package 6
IPB

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 773785

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

Document Identification

Project Acronym
Project Full Title

Project ID

Starting Date
Duration

H2020 Call ID & Topic

Project Website

Project Coordinator
Work Package No. & Title
Work Package Leader
Deliverable No. & Title

Responsible Partner
Author (s)

Review & Edit

Type

Dissemination Level
Date

Version

Status

SMARTCHAIN

Towards Innovation - driven and smart solutions in short food supply
chains

773785

01.09.2018

36 months

SFS-34-2017 - Innovative agri-food chains: unlocking the potential for
competitiveness and sustainability

http://www.smartchain-h2020.eu/

University of Hohenheim (UHOH)

WP6 Innovation platform

ISEKI-Food Association (IFA)

D6.4 Implementation of the inventory of innovations, related interactive
tools

Institute of Physics Belgrade (IPB)

Dusan Vudragovi¢, Petar Jovanovi¢, Antun Balaz

Katherine Flynn, Foteini Chrysanthopoulou, Gunter Greil (IFA)

Report

PU — Public

26.02.2020

1.0 Dusan Vudragovi¢ (IPB)

1.1 Javier Casado Hebrard (UHOH)

1.2 Katherine Flynn, Foteini Chrysanthopoulou, Gunter Greil (IFA)

Final

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

Executive Summary

The focus of this deliverable, as defined in the project’'s Description of Action [1], is to present the
implementation of the inventory of innovations and related interactive tools. Our implementation followed the
functional requirements and the initial design of the system presented in the deliverable D6.2 [2]. The current
document describes the development stage of the system and its components in the middle of the project
lifetime (M18) and will be updated at the end of the project (M35).

In this document we have outlined the main technical details and described the implementation of components
that are structured into three layers: the frontend, the backend, and the underlying infrastructure. For each
component, we have reported its function and implementation details. The significant number of components
are based on existing widely used open source solutions, such as Elasticsearch [3], [4], Apache Tika [5], [6],
LevelDB [7], and Casbin [8]. For the project purposes, these are made use of by developing a set of related
interactive tools: REST API, document store, and dynamic platform. Together, all these components produce
a workflow that realizes the SMARTCHAIN inventory of innovations.

This workflow is exposed for the frontend components through the REST API to consume the service. One of
the frontend components is the dynamic platform that allows querying of the stored innovations, and the same
feature will be incorporated into the SMARTCHAIN Innovation platform. Contrary to the innovation platform,
whose interface is designed to support a wide range of communities outside of the project, the dynamic
platform is mainly towards the project participants. Therefore, the innovation platform sends read-only
requests to the innovation inventory, while the dynamic platform also supports write requests, i.e., project's
hub managers and WP leaders are able to store new and edit existing information within the inventory through
the dynamic platform.

After a brief introduction in Section 1, Section 2 of this deliverable gives an overview of the system's
architecture, describes functions of components, and lists open source solutions that are used for the
implementation of the inventory of innovations. Section 3 gives technical details on related interactive tools,
components that are developed within the framework of the project and whose main purpose is to orchestrate
processes and to enable interaction between different components in the system. An initial set of innovations
that are stored within the database is collected in the process that is described in Section 4. Section 5 presents
the deliverable conclusions, while Appendix A specifies the REST API in a more technical manner, and Appendix
B contains an innovation description template, a minimal set of metadata we have used for the description of
an innovation.

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

Table of Contents

Document Identificationuieeiimmmmmsiinmmss i —————— 4
1. 3 o T 11T ot oo 5
2. Implementation of the INventoryc.ciciiiiiiimmimrsr s s e n s e na e na e nn s 6
3. Related interactive toolsicciiiimeeiiimieeiinire s s s 8
G T80 R o o{ 8 1T 1 s =TT 8

C T]) I A\ o PN 9

I T9C TN DY/ =1 o 1Tl o] =1 o o o PP 11
4, Initial data collectionciieeeiimimeeesinmmsme i s s 13
00T T ol T =] T 14

A. REST API specificationccuueceiimmmeeesimmmnsssimmmmssssimmmssssssmmsssssmmnsssssmmnsssssssnanssssnnsnssssnnnnnsssnnns 15
S A T o1 B[7= 15
A2 AHACHMENTS ... 17
A3 SN 18
A4 ADMINISErALIVE ..o 19
B. Innovation Description Template....cccurrecimrmsimmesimmsesimmesimmssssmmssmmssssmnssrmssssrssssrnnsssnnsssennssses 20
2 =T = 3 ol 22

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

Glossary
API Application program interface
IDT Innovation description template
IP Intellectual property
JSON JavaScript object notation
PDF Portable document format
REST Representational state transfer
SFSC Short food supply chains
wpP Work package

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

1. Introduction

The development within the WP6 relies on the demands identified during the project preparation stage,
requirements collected from actors and stakeholders at the multi-actor workshops, and currently available
technology solutions. Due to the increasingly varied nature and practice of short supply chains, dependencies
on different geographic conditions (culture, climate, resources, governing structures, available infrastructure,
market, etc.), the consortium is primarily focused on 18 preselected case studies, existing short food supply
chains, from 9 countries (2 case studies per country). During the analysis of these case studies, the project
identified innovative and practical solutions relevant to the short food supply chain scale up. In order to enable
knowledge transfer, innovation, and cooperation between the involved stakeholders of the studied short food
supply chains, all these practical solutions are collected within a virtual environment developed for the
acceleration of knowledge transfer, innovation, and cooperation - the SMARTCHAIN inventory of innovations.

The inventory of innovations allows storing, generating, sharing and utilizing information on innovations,
facilitating communication between the innovation hubs. The front-end of the inventory is an interactive online
portal (SMARTCHAIN Innovation platform, https://www.smartchain-platform.eu/) oriented towards all the
stakeholders and actors, and the dynamic platform (https://scinno.ipb.ac.rs/), oriented to hub managers and
WP leaders. The backend is the inventory (database) of available innovations, solutions, and
recommendations. The development of the SMARTCHAIN Innovation platform is done as a part of task WP6.1,
while its backend (inventory) and related interactive tools, such as the dynamic platform, which is the focus
of this deliverable, within the task WP6.2.

The innovation inventory is implemented as a document organization and retrieval system, which supports
quick finding and discovery of information related to short food supply chains. Through it, the users are able
to upload, share, and discover innovations, patents, IPs, and other materials related to food supply chains.
The target user group are farmers and agricultural organizations looking to optimize their operations, as well
as innovation donors, i.e., researchers, technology providers, etc., who wish to raise the visibility of their
innovations within a highly interested audience.

https://www.smartchain-platform.eu/
https://scinno.ipb.ac.rs/

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

2. Implementation of the inventory

The SMARTCHAIN innovation inventory is developed based on the functional requirements and the initial
design of the system architecture documented in the deliverable D6.2 - Design of the inventory of innovations
and related interactive tools. In this document, the high-level architecture of the SMARTCHAIN inventory has
been structured into three layers: the frontend and the backend component, and the underlying infrastructure.
This is illustrated in Figure 1.

The main content in the innovation inventory system is uploaded by innovation donors, project's hub managers
and WP leaders, through the dynamic platform (https://scinno.ipb.ac.rs/). This is done using the Innovation
Description Template (IDT), the online web form (or offline form) that, besides innovation descriptions,
supports the entry of additional data, such as geographical location, technology readiness level, potential
customers, patent information, related documentation, photos, videos, etc. The current version of the IDT is
given in Appendix B. All these data are used to better gauge the relevance of the innovation to various search
queries and users. Such a search request could be submitted via the dynamic platform, and the same feature
will be incorporated into the innovation platform. Contrary to the innovation platform, whose interface is
designed to support a wide range of communities outside of the project, the dynamic platform is mainly
oriented towards the project participants. Therefore, the innovation platform sends read-only requests to the
innovation inventory, while the dynamic platform also supports write requests, i.e., project's hub managers
and WP leaders are able to store new and edit existing information within the inventory through the dynamic
platform.

Both the innovation and dynamic platform requests are handled through the SMARTCHAIN REST API
component. This component supports standard create-read-update-delete operations on documents stored in
the system. Technical description of the API is given in Section 3.2.

The central component of the backend layer is the SMARTCHAIN document store. It brings together all
backend services and databases, in particular, technology database, indexing and search engine, metadata
store, and document analyzer. In this layer, information is organized into JSON document structures, which
can be extended by an arbitrary number of additional fields. The system is developed to support such an
extension, ensuring that new fields are searchable either via free-form queries, which do the full-text search,
or structured queries, which can give more specific match criteria. The documents can also have file
attachments, which can be image data, PDFs, Word documents, spreadsheets, document scans, etc. All these
attachments are processed in the background by the document analyzer to extract any searchable text content
from them. Each attachment is associated with a field in the document structure, where the extracted text
and file metadata are stored. The attachment files themselves are stored in an integrated LevelDB database
[7] that resides in the underlying infrastructure layer. In order to expose the attachments through the REST
API, a corresponding unique key is assigned per attachment within the JSON document.

LevelDB was chosen as a file storage because of its simple interface and ability to be fully integrated into the
document store service binary. This reduces the number of components inside the system. In essence, it is a
fast key-value store that can use any binary string as either key or data. This allows us to store the attachment
metadata and files without additional encoding into other formats (such as base64), which would possibly
increase the size of the data. In addition to this, a direct usage of the file system would impose the need for
an additional metadata store, so LevelDB proved as a more consistent approach for this.

Besides the document management, the SMARTCHAIN document search also has a support for management
of system users. This is an administrative feature that is used to control the level of access to the service.
Users can be created, updated, deactivated, and their access can be controlled on a REST API path basis.

Elasticsearch technology [3], [4] is used for the creation and maintenance of a search index that holds all the
document structures that are put into the SMARTCHAIN Document Store. It also holds text contents from the

https://scinno.ipb.ac.rs/

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

attached files, which are extracted by the document analyzer component. Such an index enables full-text
search on any part of the document and returns matching documents ranked by how well they correspond to
the search query. More specific queries, that can give more strict control on how matches are made, can be
specified in the Elasticsearch query DSL syntax [3], [4]. In this syntax, a query is a JSON object, which has a
number of specified fields that control matching, filtering, and paging of the results.

Since the search engine within the SMARTCHAIN Document Store can only work with text data, we use the
document analyzer component to extract text information from all the files that are attached to the documents
in the store. It is based on the Apache Tika library [5], [6], which can extract text content from a wide range
of file formats. According to the documentation, it is very versatile as it supports over one thousand file types.
The extracted text is stored in the index on corresponding documents and is included in full-text searches.
The Tika service is also used to determine the mime type of attachments at upload time.

o

- SMARTCHAIN

SMARTCHAIN Innovaton Platform ic Platform

frontend
components

REST APIs

Technology Feed
Technology Assessment

t

(%]
Ll
T C
c
o C
X O
%D.
_DE
o
o

e
(o)}
23
>
IE — i
(O]
T W0
sE&
£

Figure 1: Architecture of the SMARTCHAIN inventory.

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

3. Related interactive tools

In this section, we describe interactive tools developed within the framework of the project.

3.1 Document Store

The document store is a backend service that integrates all components needed to support the SMARTCHAIN
innovation platform. It is implemented in the Go programming language [9] and has the following components:

e Embedded web server that publishes the REST API;
e Component handling the search via Elasticsearch;

e Text extraction component that uses Apache Tika;
e File storage component based on LevelDB.

The entire system is compiled and statically links into a single binary, but it has a dependency on Elasticsearch
and Tika services, which also depend on the Java platform [10]. The Go programming language was chosen
as an implementation platform because it enables easier asynchronous programming, which was used to
orchestrate all the background work that gets executed by the system in response to API requests. Another
helpful feature of it was that it can make static binaries that do not require any dependencies to be installed
on the deployment target.

The HTTP server from the Go standard library’s NET/HTTP package was chosen for hosting the REST API. It
has asynchronous processing of HTTP requests, which enables it to scale to a much larger number of
connections than it would if it instantiated a thread or process per request. It is configured to support HTTPS
protocol if the SSL certificate is available. The location of the server host certificate is given via the --cert
argument and the private key is passed through the --key argument. The details of the hosted API are given
in Section 3.2 and Appendix A.

The authorization is implemented using the Casbin library [8], which supports the PERM (Policy, Effect,
Request, Matchers) metamodel for specifying authorization schemes. In our implementation, we use the
authorization model based on access control lists (ACL) on API paths, that define the access level for each
user role. It also has an admin superuser who can access all API calls. Anonymous users are allowed GET
access on paths relevant to serving content in a read-only fashion. All requests are authenticated via the HTTP
basic authentication.

The search engine is built around Elasticsearch [3], [4] which is a service wrapper around the Lucene library
[11], that handles index operations, scaling, and fault tolerance. The interface it exposes is reminiscent of a
database, where tables correspond to separate indices and document fields to table columns. The index used
by the document store is named sc-innovations, and it is configured to use the edge n-gram tokenizer [4] in
its default analyzer for all fields. This setting allows searching and matching of incomplete phrases in order to
give meaningful results, even if there are typos in the search query.

Since the search in the SMARTCHAIN document store can only work with text data, we use Apache Tika [5],
[6] to extract text information from all files that are attached to the documents in the store. Tika is a toolkit
for text extraction, which can read text from more than one thousand different file types. Similar to
Elasticsearch, it runs as a standalone server in the background and the document store invokes its services
through an asynchronous queue.

This queue is implemented using a Go programming language channel on which each newly uploaded file is
wrapped and sent in a job structure that holds its data, the document ID, and the property in the document
to be updated. The job structures are consumed by worker goroutines, which are similar to threads, but are
asynchronous, and in IO-bound tasks, many of which can run concurrently per single thread. The processing

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

in these workers invokes Apache Tika to extract any text information from the given file and to determine its
mime type. The text contents and original file names are stored into the document in the index, on the specified
property, which makes the information contained in the file searchable. The mime type is added as metadata
into the file storage, where the original file data is also stored. This process is shown in a sequence diagram
in Figure 2. The text extraction component depends on the Tika standalone server jar being present, and, if
not, the appropriate version will be downloaded automatically and started.

The files of the attachments added to documents in the index are stored in a LevelDB storage [7]. LevelDB
was chosen as a fast key-value store, which can be included in the binary of the Document Store as a static
library, not to impose any new dependencies for the deployment. Along with the data from each file, we also
store additional metadata including the mime type and the original file name. These metadata are used later,
when serving a file to properly set response headers, so the client can render them correctly. Physically, all
data are stored in the storage component of the underlying infrastructure.

interactionText extraction)

File upload handler File storage Text extraction worker Tika Index
i 1 : store file i i i i
‘I<' ------------------- E 1 1 1
2:0k .

3 : extraction job : : '

5 : text, mime type

6 : add text to doc

T T]

E 8 : store mime type 7ok :
SRR 9ok T 7 :

Figure 2: A sequence diagram of the file upload and text extraction process.

3.2 RESTAPI

The REST API provides a unified interface to the document store backend. It is available on the HTTPS protocol
and, depending on the configuration, could be optionally protected by the basic HTTP authentication scheme.
The API exposes four types of resources: Documents, Attachments, Search, and User.

The central entity of the information schema in the document store is a Document. It is a JSON object with
arbitrary properties, except for the ones which begin with an underscore (_), as they are subject to additional
processing in the system. Currently, reserved properties are __pictures and _documents, which are intended
for the picture and file attachments. After processing, pictures and documents properties are populated with
arrays containing the corresponding relative URLs. Also, the original fields are populated with objects that
contain file metadata and extracted text contents for full-text search. Documents are identified by _id field,
which is assigned at document creation in the search index. The API endpoint for documents is on /api/doc
path, and it supports CRUD (Create, Read, Update and Delete) operations on the documents using the
standard HTTP verbs, as prescribed by REST:

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

e POST creates a document;

e GET fetches the document;

e PUT updates an existing document;
e DELETE removes a document.

A more detailed description of each operation, along with example requests and responses, is given in
Appendix A.1.

The Attachments are files that are associated with an innovation. They are tied to a specific document on
one of its properties. The property they attach to is specified during the upload, and it has structure of an
array, in order to support upload of multiple files at once. Subsequent uploads to the same property are
appended to the array. The attachments have two separate endpoints:

e /api/upload - this path accepts POST request with multipart/form-data encoding that contains the
target document ID, the target property on which to place the attachments, and the attachment files;

o /api/attachment/{key} - this path responds to GET requests and returns the file of the attachment by
the given key. The key is generated from the document ID, property, and index in the array of
attachments.

When fetching an attachment, it will be served with an appropriate mime/type and original file name in
response headers. Technical specification and example of the attachments’ resources are given in Appendix
A.2.

The underlying search engine in the document store accepts search queries specified as JSON objects. The
Search endpoint is on /api/search path and it accepts POST requests through JSON query in the request
body. The format of these queries is specified in Elasticsearch Query DSL, and it supports many options to
control the result matching, filtering, paging, etc. More details on common queries and a request example can
be found in Appendix A.3. Search results are served in an abbreviated form in a JSON array. Each element
contains the following fields:

e docid - document ID;

e title - innovation title;

e summary - innovation description, shortened;

e pictures - the array of URLs of the attached pictures from the _pictures property.

The results are sorted by relevance score, and the main intended use for these data are to be rendered on
the search results page and to provide enough information to link to the full document behind the match.

Administrative operations on the document store service include system User administration. These are the
users who can access the REST API, and their access is controlled by ACL's rules on API paths. The
authorization rules are configured in the auth_model.conf and policy.csv files, which are outside the scope of
the REST API. A user entity contains the following fields:

e Uusername - unique username;

e password - only filled out on user creation or update, otherwise blank;
e role - role name that controls the authorization of the user;

e mail - mail address;

e active - boolean that specifies if the user is enabled.

The requests available for the users’ resource are:

10

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

e POST on /api/users creates a new user. The password in the request is expected to be in clear text
and it will be stored hashed on the backend. It will never be sent in a response to any other request,
it is only used for authenticating requests.

e GET on /api/users fetches the list of all system users, with password fields left blank.

e GET on /api/users/{username} fetches a specific user, also without a password.

e PUT on api/users updates a given user to the field values specified in a JSON object in the request
body. Updates are total, if any field is left blank or omitted, it will be cleared in the database as well.

More details and example requests and responses are given in Appendix A.4.

3.3 Dynamic platform

The dynamic platform (https://scinno.ipb.ac.rs/) is a web frontend that enables read/write access to the

Document Store for the SMARTCHAIN hub managers and WP leaders. It is implemented in C++ using the Wt
web toolkit. The application provides a view to search and show results from the document store, and a
detailed view for specific documents that can be edited there. The dynamic platform search page is illustrated
in Figure 3, and a document page in Figure 4.

EHISMARTCHAIN

'SMART SOLUTIONS IK SHORT FOOD SUPPLY CHAINS.

Vending machines

Landwirtschaftskammer Niedersachsen
(Chamber of Agriculture Lower-Saxony,
Germany) Is implementing vending machines for
agricult...

more

Foodhub.hu
Foodhub.hu reconnects small-scale farmers
directly with businesses looking for local, high-
(@ ,‘\Q quality fresh ingredients, be they re...
> A0 (\\,’ = more
- (e

Disinfections systems

These systems can be used for the disinfection
of indoor air, surfaces and water - for the
industrial use in the FOOD sector. ...

more

Fruit press

& In a competitive environment, offering final
[4 products to the consumers that are regular in

» 4 shape, color, taste and size is essen...
a 3
[4 E
14

Solidarische Landwirtschaft

The concept of Community Supported
Agriculture (CSA) is innovative in itself. CSA are
partnerships of mutual commitment between ...
more

Figure 3: The dynamic platform search page.

Transformational activities

—

The non-profit co-operative “Allotropon” is
premised on and supports the concepts of

solidarity economy and community develo...
more

Mobile poultry coops

Landwirtschaftskammer Niedersachsen
(Chamber of Agriculture Lower-Saxony) supports
the mobile poultry farming (organic and conve...
more

High-pressure processing

The novelty proposed Is the non-thermal food
processing technologies as alternative to
conventionally heat treatments in high qu...
more

k

Educational seeds

"Gala" Is a retail co-operative founded in Chania,
Crete, back in the summer of 1996. The
founding members consisted of a small ...

more

It exists several types of trucks depending on
the type of expected final products. - **Truck for
canning*: Implementation of ...

more

Freeze-drying solutions

In temporary and perishable products such as

- fungus/mushrooms and some kind of fruits and

vegetables Is essential to maintain th...
more

s reze Do '

Hermeneus marketplace

(;;3 Hermeneus Is a free and responsible

consumption community, in which sellers and
buyers contact directly to buy and sell
products...

more

New cheese products

Open Farms

Diversification of products is a strategy for small
firms and producers in order to satisfy
consumers' needs that are increasi...

more

b2 The Zala-Termalvigye Local Action Group (LAG)
created the Zala Valley Open Farms in 2018 on
the basis of the LEADER programme...

more

Vacuum-microwave technology Is a rapid, low
temperature drying method that maintains food
product’s colour, flavour and nutrie...

more

11

https://scinno.ipb.ac.rs/

SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

Enter a search item

LI SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

Vacuum-microwave technology

Summary

Vacuum-microwave technology is a rapid, low temperature drying method that maintains food product’s colour, flavour and
nutrients. This technology enables uniform drying with flexible moisture content.

Practical benefits of this technology are: (1) high speed processing since drying is rapid and with significant time savings
over other drying technologies (e.g. air drying and freeze drying); (2) scalability since machine can scale from research and
design level, batch production to continuous commercial production; (3) flexible moisture content in final product. Namely,
uniform volumetric drying allows control over final moisture content and texture achieving shelf stable final products in
parallel. (4) continuous processing because this technology can integrate into continuous production line (5) reduced
energy saving due to rapid drying time (6) new product opportunities due to a new technology that enable production of
food products unachievable with other technology.

After drying process the new food products can be easily and regularly distributed in ambient temperature all over the world
food market. The reason is reduced moisture and prolonged shelf life.

Type End users Countries

Technological innovation Food manufacturers deal with fruits, Worldwide
vegetables, dairy products, ready to
eat meals and snacks, meat and sea
food

External links

https://www.enwave.net/

Support

Mike Wilkes

Director of Sales & Business
Development at EnWave...
EnWave Corporation
Dalhousie University

Linked (-

Figure 4: The dynamic platform document page.

12

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

4. Initial data collection

The initial data for the Innovation database was collected using a questionnaire filled out by the SMARTCHAIN
hub managers and WP leaders. The questionnaire (given in Appendix B) contains a minimum set of information
that describes an innovation, in particular:

o title of the innovation;

e picture that visually describes the innovation;

e type of innovation, whether it is technological, social, environmental, etc.;

e end users who might be interested in the innovation;

e short summary for practitioners;

e website for additional information;

e countries of origin;

o documents and publications;

e technology readiness level;

e people involved, who are able to provide additional information and support.

Besides this basic set of metadata, additional information is supplied in the form of documents, papers, external
websites, etc. At the moment, the survey collected over 18 descriptions of innovations ranging from agriculture
monitoring drones to new types of cheese. All this information was indexed and stored in the SMARTCHAIN
document store.

Additional data is expected to be incorporated in the dynamic platform soon based on the more than 110
descriptions of innovations prepared by WP2 (Tech- and non-technological innovations).

13

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

5. Conclusions

As it is described in the SMARTCHAIN DoA, the project aims to foster and accelerate the shift towards
collaborative short food supply chains and to introduce new robust business models and innovative practical
solutions that enhance the competitiveness and sustainability of the European agri-food system. This is realized
by the analysis of the technological and non-technological (WP2), social (WP3), consumer (WP4),
environmental (WP5), and business and policy (WP7) specific factors related to short food supply chains, which
will result in identification of the key parameters that influence sustainable food production and rural
development.

The WP6 supports these activities by developing a virtual environment for knowledge transfer, innovation, and
cooperation for all the stakeholders of the short food supply chain. From the beginning of the project, we have
expected a lot of unstructured information to be stored within the inventory system. Therefore, to enable an
efficient search for large quantities of unstructured data, we have created the index that holds searchable
information extracted from documents or manually uploaded to the system. It is organized to support full-text
search on every available piece of information. We have identified available open source solutions that could
be reused for project purposes and developed a set of related tools that orchestrate the workflow in a seamless
manner.

In this document, we have reported technical details of the frontend and backend components. The central
part of the system is the document store that integrates all components within the SMARTCHAIN inventory of
innovations, and the REST API that allows frontend components to consume the service. In addition to these,
we have documented the dynamic platform, which demonstrates usage of the provided REST API, and the
initial database population.

14

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

A.l

A. REST API specification

This appendix gives a more technical specification of the developed SMARTCHAIN REST API. Up to date version
of this specification can be found at https://scinno.ipb.ac.rs/api.html.

Documents

m /api/doc

Example URI

Add document to db

POST /api/doc
Request Hide
Headers

Content-Type: application/json

Body

"title": "Vending machines for agricultural fresh food products”,
"type": "Technolegical innovation",
"endusers": [
"farmers",
"gardeners",
"food producers"
I
"summary": "Landwirtschaftskammer Niedersachsen (Chamber of Agriculture L
"website": [
"http://www.agridee.ch/"
1y
"country": [
"Switzerland",
"Germany"
14
"documentsAndPublications™: [
"https://www.youtube.com/watch?v=12xgEmkWSNA"

14
"involvedPecple": [
{
"name": "Thomas Stuber",
"mail": "infofagridee.ch",
"url": "https://ch.linkedin.com/in/thomas-stuber-563094156"
Y,
{
"name": "Nathalie Stuber"”,
"mail"”: "nathalie.stuber@agridee.ch"
}
1y
"pictures": []
}
Response 200 Hide
Headers

Content-Type: application/json

Body

{
'_id': '8WZSEHABGgCqiXLaOYpO',
' _index': 'sc_innovations',
'_primary term': 2,
' seq no': 5,
' shards': {'failed': 0, 'successful': 1, 'total': 2},
' _type': '_doc',
' version': 1,
'result’': 'created'

}

m /api/doc/{id}

If the document contains | _pictures and _documents arrays which are not empty, arrays at

Fetch specific document

properties pictures and decuments will contain string urls for respective picture or document
attachments.

Example URI

GET /api/doc/SXS0zm0Bafn51MDMJSM1
URI Parameters Hide

id |string (required) Example: SXS0zm0Bafn51MDMJSM1
id of a document

Response 200 Hide

Headers

Content-Type: application/json

Body

{
" documents": [],
" pictures": [],
"country": [
"Switzerland",
"Germany"
1s
"documents": [],
"documentsAndPublications": [
"https://www.youtube.com/watch?v=12xgEmkWSNA"
1r

"endusers": [

"farmers",
"gardeners",
"food producers"
1s
"involvedPeople": [
{
"infolagridee.ch",
"Thomas Stuber"
"url”: "https://ch.linkedin.com/in/thomas-stuber-563094156"
}s
{
"mail™: "nathalie.stuberf@agridee.ch",
"name": "Nathalie Stuber”
}
1s

"pictures": null,

"summary "Landwirtschaftskammer Niedersachsen (Chamber of Agriculture L
"title": "Vending machines for agricultural fresh food products”,
"type": 'echnological innovation",
"website": [
"http://www.agridee.ch/"
1
}
-—

15

https://scinno.ipb.ac.rs/api.html

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

m fapi/doc/{id}

Updates the document specified by id and sets only the fields from the request. In the example below,
test_field issetto test_value inthe documentwithid SXS0zm0OBafn51MDMJISM1 . Other
existing fields are left untouched.

Update a document

Example URI

PUT /api/doc/SXS0zm0Bafn51MDMJSM1

URI Parameters Hide

id |string|(required) Example: SXS0zm0Bafn51MDMJSM1
id of a document

Request Hide
Headers

Content-Type: application/json

Body
{
"test_field": "test_value"
+
Response 200 Hide
Headers

Content-Type: application/json

Body

"_id": "SXS0zm0Bafn51MDMJSM1",
"_index": "sc_innovations",
" primary term": 2,

_seq no": 6,
"_shards": {
"failed": 0,
"successful": 1,
"total": 2

b

" type": " _doc",

" _version": 2,
"result": "updated"

@ /api/doc/ {id}

Example URI

Delete a document

DELETE /api/doc/SXS0zm0Bafn51MDMJSM1

URI Parameters Hide

id |string (required) Example: SXS0zm0BafnSTMDMJSM1
id of a document

Response 200 Hide

Headers

Content-Type: application/json

Body

d": "SX50zm0Bafn51MDMISM1",
_index": "sc_innovations",
" primary term": 2,
"_seq no": 7,
_shards": {
"failed": 0,
"successful": 1,
"total": 2

"_doc",
"_wersien": 3,

“forced refresh": true,
"result": "deleted"

16

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

A.2 Attachments

m /api/upload Upload attachment E /api/attachments/{key} Get attachment
Attachments are uploaded using multipart/form-data POST request. This is done in order to handle file The attached file is returned as file stream with appropriate mime type and original filename set in the
uploads in the standard way that all browsers support. headers.
Three fields are expected: Example URI

+ docid - id of the document on which the attachment is being put GET /api/attachments/SXS0zm0BafnSTMDMJSM1 _pictures.0

« property - property of the document on which the attachment will be associated

« attachment - one or multiple files to be attached. URI Parameters Hide
Example URI

key | string|(required) Example: SXS0zm0BafnSTMDMJSM1 _pictures.0

POST /api/upload key identifier of an attachment, consists of document id and property where the
file is attached in the document, concatenated with dots (.)

Request Hide

Headers

Content-Type: multipart/form-data

Content-Disposition: form-data; name="docid"
SXS0zm0Bafn51MDMISML
—--WebKitFormBoundary8M3sSU13ul51XSJm
Content-Disposition: form-data; name="property"

_pictures

Content-Disposition: form-data; name="attachment"; filename="something.jpg"
Content-Type: image/jpeg

data...

------ -WebKitFormBoundary8M3sSU13ul51XSIm--
Response 200 Hide
Headers

Content-Type: application/json

Body

"Status": "OK"

17

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

A.3 Search

m /api/search Search documents

Search query is sent as a JSON object conforming to the Elasticsearch Query DSL.

Some useful queries are free from query that is given in the example request, and the following query
for listing all documents in the database: { "query": {"match_all": {}} } .

Fields size and from are used to control paging, with size being the number of results to fetch per
page, and from is the result number from which to start fetching (size* (page-1)).

Example URI

POST fapi/search
Request Hide
Headers

Content-Type: application/json

Body

"query": {
"simple_guery_string": {
"query": "free form search query"

Response 200 Hide
Headers

Content-Type: application/json

Body

"docid": "95qICnABP8alWIwmFcBE",
"title": "Vending machines for agricultural fresh food products"”,
"summary": "Landwirtschaftskammer Niedersachsen (Chamber of Agriculture
"pictures”: []
b
{
"docid": "-ZgkCnABPBalWIwm8sOW",
"title": "Dusn Vending machines for agricultural fresh food products”,
"summary": "Landwirtschaftskammer Niedersachsen (Chamber of Agriculture
"pictures”: [
"/api/attachments/-ZgkCnABPBalWIwmBs9W. pictures.0",
"/api/attachments/-ZgkCnABP8alW9wm8s9W. pictures.l",
"/api/attachments/-ZgkCnABPBalW9wm8s9W. pictures.2"

18

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

A4

Administrative

m /api/users Create user
Example URI
POST /api/users
Request Hide
Headers
Content-Type: application/json
Body
{
"Username": "exampleUser",
"Password": "plain text, will be hashed in the db",
"Role": "admin",
"Mail" userfexample.com",
"Active": true
}
Response 200 Hide
Headers

Content-Type: application/json

Body

{
"Status": "OK"

Update user

m /api/users

Note: updates on User are total, i.e. every field is set to the new value in the object passed in the
request.

Example URI

PUT fapi/users
Request Hide
Headers

Content-Type: application/json

Body
{
"Username": "exampleUser",
"Password": "new password"
"Role": "admin",
"Mail": "userfexample.com",
"Active": true
}
Response 200 Hide
Headers

Content-Type: application/json

Body

{

"Status": "OK"

E /api/users List all users
Example URI
GET /api/users
Response 200 Hide
Headers
Content-Type: application/json
E /api/users/{username} Fetch user
Example URI
GET /api/users/exampleUser
URI Parameters Hide
username | string (required) Example: exampleUser
Response 200 Hide

Headers

Content-Type: application/json

Body

"Username": "exampleUser",
"Role": "admin",

"Mail": "userf@example.com",
"Active": true

19

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

B. Innovation Description Template

SMARTCHAIN innovation description template

Title of innovation
(mandatory field)
Insert here title of innovation.

Picture of innovation

(preferable)

Picture that visually describes innovation. Please supply link to the picture or attach it to the
e-mail.

Type of innovation

(mandatory field)

Types: technological, non-technological, social, consumer, environment, business, policy,
other.

End users
(mandatory field)
Who might be interested for the innovation.

Short summary for practitioners

(mandatory field)

Practice abstract, innovation/result description (1000-1500 characters, word count — no
spaces).

This summary should be as interesting as possible for farmers/end-users, using a direct and
easily understandable language and pointing out entrepreneurial elements that are
particularly relevant for practitioners (e.g. related to cost, productivity, etc). Research-
oriented aspects that do not help the understanding of the practice itself should be avoided.

The main practical recommendation(s): what would be the main added
value/benefit/opportunities to the end-user if the generated innovation/knowledge is
implemented? How can the practitioner make use of the innovation/result?

Practice abstract examples are available at https://ec.europa.eu/eip/agriculture/en/find-
connect/projects/short-supply-chains-knowledge-innovation-network

Website
(preferable)
Web site for additional information.

Country

(preferable)
Country of origin.

20

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

Documents and publications
(preferable)
Please send it attached to the e-mail or link to the webpage.

Technology readiness level

(preferable)
If applicable, see https://en.wikipedia.org/wiki/Technology._readiness_level

Involved people

(mandatory field)
List of people that are able to provide additional information. Please provide: first name, last
name, e-mail, LinkedIn page.

21

57 SMARTCHAIN

SMART SOLUTIONS IN SHORT FOOD SUPPLY CHAINS

References

[1] Project SMARTCHAIN 773785 — Annex I - Description of the action.
[2] SMARTCHAIN D6.2 — Design of the inventory of innovations and related interactive tools.
[31 R. Gheorghe, M. L. Hinman, and R. Russo, Elasticsearch in Action, Manning Publications (2015).

[4] Official Elasticsearch webpage, https://www.elastic.co/.

[5] J. zZitting and C. Mattmann, Tika in Action, Manning Publications (2011).

[6] Apache Tika - a content analysis toolkit, https://tika.apache.org/.

[7]1 LevelDB - fast key-value storage library, https://github.com/google/leveldb.

[8] Casbin - authorization library, https://casbin.org/.
[91 A. A. A.Donovan, B. W. Kernighan, The Go Programming Language, Addison-Wesley (2015).

[10] S. V. Chekanov, Numeric Computation and Statistical Data Analysis on the Java Platform, Springer
(2016).

[11] O. Gospodnetic, E. Hatcher, Lucene in Action, Manning Publications (2010).

22

https://www.elastic.co/
https://tika.apache.org/
https://github.com/google/leveldb
https://casbin.org/

