
SMARTCHAIN: Towards Innovation - driven and smart solutions in short food supply chains

This project has received funding from the European Union’s Horizon 2020 research and innovation

programme under grant agreement No. 773785

D6.4 Implementation of the

inventory of innovations,

related interactive tools

Work Package 6

IPB

1

Document Identification

Project Acronym SMARTCHAIN

Project Full Title Towards Innovation - driven and smart solutions in short food supply

chains

Project ID 773785

Starting Date 01.09.2018

Duration 36 months

H2020 Call ID & Topic SFS-34-2017 - Innovative agri-food chains: unlocking the potential for

competitiveness and sustainability

Project Website http://www.smartchain-h2020.eu/

Project Coordinator University of Hohenheim (UHOH)

Work Package No. & Title WP6 Innovation platform

Work Package Leader ISEKI-Food Association (IFA)

Deliverable No. & Title D6.4 Implementation of the inventory of innovations, related interactive

tools

Responsible Partner Institute of Physics Belgrade (IPB)

Author (s) Dušan Vudragović, Petar Jovanović, Antun Balaž

Review & Edit Katherine Flynn, Foteini Chrysanthopoulou, Gunter Greil (IFA)

Type Report

Dissemination Level PU – Public

Date 26.02.2020

Version 1.0 Dušan Vudragović (IPB)

 1.1 Javier Casado Hebrard (UHOH)

 1.2 Katherine Flynn, Foteini Chrysanthopoulou, Gunter Greil (IFA)

Status Final

2

Executive Summary

The focus of this deliverable, as defined in the project’s Description of Action [1], is to present the

implementation of the inventory of innovations and related interactive tools. Our implementation followed the

functional requirements and the initial design of the system presented in the deliverable D6.2 [2]. The current

document describes the development stage of the system and its components in the middle of the project

lifetime (M18) and will be updated at the end of the project (M35).

In this document we have outlined the main technical details and described the implementation of components

that are structured into three layers: the frontend, the backend, and the underlying infrastructure. For each

component, we have reported its function and implementation details. The significant number of components

are based on existing widely used open source solutions, such as Elasticsearch [3], [4], Apache Tika [5], [6],

LevelDB [7], and Casbin [8]. For the project purposes, these are made use of by developing a set of related

interactive tools: REST API, document store, and dynamic platform. Together, all these components produce

a workflow that realizes the SMARTCHAIN inventory of innovations.

This workflow is exposed for the frontend components through the REST API to consume the service. One of

the frontend components is the dynamic platform that allows querying of the stored innovations, and the same

feature will be incorporated into the SMARTCHAIN Innovation platform. Contrary to the innovation platform,

whose interface is designed to support a wide range of communities outside of the project, the dynamic

platform is mainly towards the project participants. Therefore, the innovation platform sends read-only

requests to the innovation inventory, while the dynamic platform also supports write requests, i.e., project's

hub managers and WP leaders are able to store new and edit existing information within the inventory through

the dynamic platform.

After a brief introduction in Section 1, Section 2 of this deliverable gives an overview of the system's

architecture, describes functions of components, and lists open source solutions that are used for the

implementation of the inventory of innovations. Section 3 gives technical details on related interactive tools,

components that are developed within the framework of the project and whose main purpose is to orchestrate

processes and to enable interaction between different components in the system. An initial set of innovations

that are stored within the database is collected in the process that is described in Section 4. Section 5 presents

the deliverable conclusions, while Appendix A specifies the REST API in a more technical manner, and Appendix

B contains an innovation description template, a minimal set of metadata we have used for the description of

an innovation.

3

Table of Contents

Document Identification .. 4

1. Introduction ... 5

2. Implementation of the inventory ... 6

3. Related interactive tools .. 8

 Document Store ... 8

 REST API .. 9

 Dynamic platform .. 11

4. Initial data collection ... 13

5. Conclusions ... 14

A. REST API specification ... 15

A.1 Documents .. 15

A.2 Attachments .. 17

A.3 Search .. 18

A.4 Administrative ... 19

B. Innovation Description Template ... 20

References ... 22

4

Glossary

API Application program interface

IDT Innovation description template

IP Intellectual property

JSON JavaScript object notation

PDF Portable document format

REST Representational state transfer

SFSC Short food supply chains

WP Work package

5

1. Introduction

The development within the WP6 relies on the demands identified during the project preparation stage,

requirements collected from actors and stakeholders at the multi-actor workshops, and currently available

technology solutions. Due to the increasingly varied nature and practice of short supply chains, dependencies

on different geographic conditions (culture, climate, resources, governing structures, available infrastructure,

market, etc.), the consortium is primarily focused on 18 preselected case studies, existing short food supply

chains, from 9 countries (2 case studies per country). During the analysis of these case studies, the project

identified innovative and practical solutions relevant to the short food supply chain scale up. In order to enable

knowledge transfer, innovation, and cooperation between the involved stakeholders of the studied short food

supply chains, all these practical solutions are collected within a virtual environment developed for the

acceleration of knowledge transfer, innovation, and cooperation - the SMARTCHAIN inventory of innovations.

The inventory of innovations allows storing, generating, sharing and utilizing information on innovations,

facilitating communication between the innovation hubs. The front-end of the inventory is an interactive online

portal (SMARTCHAIN Innovation platform, https://www.smartchain-platform.eu/) oriented towards all the

stakeholders and actors, and the dynamic platform (https://scinno.ipb.ac.rs/), oriented to hub managers and

WP leaders. The backend is the inventory (database) of available innovations, solutions, and

recommendations. The development of the SMARTCHAIN Innovation platform is done as a part of task WP6.1,

while its backend (inventory) and related interactive tools, such as the dynamic platform, which is the focus

of this deliverable, within the task WP6.2.

The innovation inventory is implemented as a document organization and retrieval system, which supports

quick finding and discovery of information related to short food supply chains. Through it, the users are able

to upload, share, and discover innovations, patents, IPs, and other materials related to food supply chains.

The target user group are farmers and agricultural organizations looking to optimize their operations, as well

as innovation donors, i.e., researchers, technology providers, etc., who wish to raise the visibility of their

innovations within a highly interested audience.

https://www.smartchain-platform.eu/
https://scinno.ipb.ac.rs/

6

2. Implementation of the inventory

The SMARTCHAIN innovation inventory is developed based on the functional requirements and the initial

design of the system architecture documented in the deliverable D6.2 - Design of the inventory of innovations

and related interactive tools. In this document, the high-level architecture of the SMARTCHAIN inventory has

been structured into three layers: the frontend and the backend component, and the underlying infrastructure.

This is illustrated in Figure 1.

The main content in the innovation inventory system is uploaded by innovation donors, project's hub managers

and WP leaders, through the dynamic platform (https://scinno.ipb.ac.rs/). This is done using the Innovation

Description Template (IDT), the online web form (or offline form) that, besides innovation descriptions,

supports the entry of additional data, such as geographical location, technology readiness level, potential

customers, patent information, related documentation, photos, videos, etc. The current version of the IDT is

given in Appendix B. All these data are used to better gauge the relevance of the innovation to various search

queries and users. Such a search request could be submitted via the dynamic platform, and the same feature

will be incorporated into the innovation platform. Contrary to the innovation platform, whose interface is

designed to support a wide range of communities outside of the project, the dynamic platform is mainly

oriented towards the project participants. Therefore, the innovation platform sends read-only requests to the

innovation inventory, while the dynamic platform also supports write requests, i.e., project's hub managers

and WP leaders are able to store new and edit existing information within the inventory through the dynamic

platform.

Both the innovation and dynamic platform requests are handled through the SMARTCHAIN REST API

component. This component supports standard create-read-update-delete operations on documents stored in

the system. Technical description of the API is given in Section 3.2.

The central component of the backend layer is the SMARTCHAIN document store. It brings together all

backend services and databases, in particular, technology database, indexing and search engine, metadata

store, and document analyzer. In this layer, information is organized into JSON document structures, which

can be extended by an arbitrary number of additional fields. The system is developed to support such an

extension, ensuring that new fields are searchable either via free-form queries, which do the full-text search,

or structured queries, which can give more specific match criteria. The documents can also have file

attachments, which can be image data, PDFs, Word documents, spreadsheets, document scans, etc. All these

attachments are processed in the background by the document analyzer to extract any searchable text content

from them. Each attachment is associated with a field in the document structure, where the extracted text

and file metadata are stored. The attachment files themselves are stored in an integrated LevelDB database

[7] that resides in the underlying infrastructure layer. In order to expose the attachments through the REST

API, a corresponding unique key is assigned per attachment within the JSON document.

LevelDB was chosen as a file storage because of its simple interface and ability to be fully integrated into the

document store service binary. This reduces the number of components inside the system. In essence, it is a

fast key-value store that can use any binary string as either key or data. This allows us to store the attachment

metadata and files without additional encoding into other formats (such as base64), which would possibly

increase the size of the data. In addition to this, a direct usage of the file system would impose the need for

an additional metadata store, so LevelDB proved as a more consistent approach for this.

Besides the document management, the SMARTCHAIN document search also has a support for management

of system users. This is an administrative feature that is used to control the level of access to the service.

Users can be created, updated, deactivated, and their access can be controlled on a REST API path basis.

Elasticsearch technology [3], [4] is used for the creation and maintenance of a search index that holds all the

document structures that are put into the SMARTCHAIN Document Store. It also holds text contents from the

https://scinno.ipb.ac.rs/

7

attached files, which are extracted by the document analyzer component. Such an index enables full-text

search on any part of the document and returns matching documents ranked by how well they correspond to

the search query. More specific queries, that can give more strict control on how matches are made, can be

specified in the Elasticsearch query DSL syntax [3], [4]. In this syntax, a query is a JSON object, which has a

number of specified fields that control matching, filtering, and paging of the results.

Since the search engine within the SMARTCHAIN Document Store can only work with text data, we use the

document analyzer component to extract text information from all the files that are attached to the documents

in the store. It is based on the Apache Tika library [5], [6], which can extract text content from a wide range

of file formats. According to the documentation, it is very versatile as it supports over one thousand file types.

The extracted text is stored in the index on corresponding documents and is included in full-text searches.

The Tika service is also used to determine the mime type of attachments at upload time.

Figure 1: Architecture of the SMARTCHAIN inventory.

St or a ge r e sour ce sCom put ing r e sour ce s

Te chnology D a t a ba se

I nde x ing a nd Se a r ch
M e t a da t a St or e

D ocum e nt Ana lyse r

D ocum e nt St or e

REST API s

Te ch nology Fe e d
Te chnology Asse ssm e nt

SM ARTCH AI N I nnova t on Pla t f or m D yna m ic Pla t f or m

u
n
d
e
rl
y
in
g

in
fr
a
st
ru
ct
u
re

b
a
ck
e
n
d

co
m
p
o
n
e
n
ts

fr
o
n
te
n
d

co
m
p
o
n
e
n
ts

8

3. Related interactive tools

In this section, we describe interactive tools developed within the framework of the project.

 Document Store

The document store is a backend service that integrates all components needed to support the SMARTCHAIN

innovation platform. It is implemented in the Go programming language [9] and has the following components:

 Embedded web server that publishes the REST API;

 Component handling the search via Elasticsearch;

 Text extraction component that uses Apache Tika;

 File storage component based on LevelDB.

The entire system is compiled and statically links into a single binary, but it has a dependency on Elasticsearch

and Tika services, which also depend on the Java platform [10]. The Go programming language was chosen

as an implementation platform because it enables easier asynchronous programming, which was used to

orchestrate all the background work that gets executed by the system in response to API requests. Another

helpful feature of it was that it can make static binaries that do not require any dependencies to be installed

on the deployment target.

The HTTP server from the Go standard library’s NET/HTTP package was chosen for hosting the REST API. It

has asynchronous processing of HTTP requests, which enables it to scale to a much larger number of

connections than it would if it instantiated a thread or process per request. It is configured to support HTTPS

protocol if the SSL certificate is available. The location of the server host certificate is given via the --cert

argument and the private key is passed through the --key argument. The details of the hosted API are given

in Section 3.2 and Appendix A.

The authorization is implemented using the Casbin library [8], which supports the PERM (Policy, Effect,

Request, Matchers) metamodel for specifying authorization schemes. In our implementation, we use the

authorization model based on access control lists (ACL) on API paths, that define the access level for each

user role. It also has an admin superuser who can access all API calls. Anonymous users are allowed GET

access on paths relevant to serving content in a read-only fashion. All requests are authenticated via the HTTP

basic authentication.

The search engine is built around Elasticsearch [3], [4] which is a service wrapper around the Lucene library

[11], that handles index operations, scaling, and fault tolerance. The interface it exposes is reminiscent of a

database, where tables correspond to separate indices and document fields to table columns. The index used

by the document store is named sc-innovations, and it is configured to use the edge n-gram tokenizer [4] in

its default analyzer for all fields. This setting allows searching and matching of incomplete phrases in order to

give meaningful results, even if there are typos in the search query.

Since the search in the SMARTCHAIN document store can only work with text data, we use Apache Tika [5],

[6] to extract text information from all files that are attached to the documents in the store. Tika is a toolkit

for text extraction, which can read text from more than one thousand different file types. Similar to

Elasticsearch, it runs as a standalone server in the background and the document store invokes its services

through an asynchronous queue.

This queue is implemented using a Go programming language channel on which each newly uploaded file is

wrapped and sent in a job structure that holds its data, the document ID, and the property in the document

to be updated. The job structures are consumed by worker goroutines, which are similar to threads, but are

asynchronous, and in IO-bound tasks, many of which can run concurrently per single thread. The processing

9

in these workers invokes Apache Tika to extract any text information from the given file and to determine its

mime type. The text contents and original file names are stored into the document in the index, on the specified

property, which makes the information contained in the file searchable. The mime type is added as metadata

into the file storage, where the original file data is also stored. This process is shown in a sequence diagram

in Figure 2. The text extraction component depends on the Tika standalone server jar being present, and, if

not, the appropriate version will be downloaded automatically and started.

The files of the attachments added to documents in the index are stored in a LevelDB storage [7]. LevelDB

was chosen as a fast key-value store, which can be included in the binary of the Document Store as a static

library, not to impose any new dependencies for the deployment. Along with the data from each file, we also

store additional metadata including the mime type and the original file name. These metadata are used later,

when serving a file to properly set response headers, so the client can render them correctly. Physically, all

data are stored in the storage component of the underlying infrastructure.

Figure 2: A sequence diagram of the file upload and text extraction process.

 REST API

The REST API provides a unified interface to the document store backend. It is available on the HTTPS protocol

and, depending on the configuration, could be optionally protected by the basic HTTP authentication scheme.

The API exposes four types of resources: Documents, Attachments, Search, and User.

The central entity of the information schema in the document store is a Document. It is a JSON object with

arbitrary properties, except for the ones which begin with an underscore (_), as they are subject to additional

processing in the system. Currently, reserved properties are _pictures and _documents, which are intended

for the picture and file attachments. After processing, pictures and documents properties are populated with

arrays containing the corresponding relative URLs. Also, the original fields are populated with objects that

contain file metadata and extracted text contents for full-text search. Documents are identified by _id field,

which is assigned at document creation in the search index. The API endpoint for documents is on /api/doc

path, and it supports CRUD (Create, Read, Update and Delete) operations on the documents using the

standard HTTP verbs, as prescribed by REST:

10

 POST creates a document;

 GET fetches the document;

 PUT updates an existing document;

 DELETE removes a document.

A more detailed description of each operation, along with example requests and responses, is given in

Appendix A.1.

The Attachments are files that are associated with an innovation. They are tied to a specific document on

one of its properties. The property they attach to is specified during the upload, and it has structure of an

array, in order to support upload of multiple files at once. Subsequent uploads to the same property are

appended to the array. The attachments have two separate endpoints:

 /api/upload - this path accepts POST request with multipart/form-data encoding that contains the

target document ID, the target property on which to place the attachments, and the attachment files;

 /api/attachment/{key} - this path responds to GET requests and returns the file of the attachment by

the given key. The key is generated from the document ID, property, and index in the array of

attachments.

When fetching an attachment, it will be served with an appropriate mime/type and original file name in

response headers. Technical specification and example of the attachments’ resources are given in Appendix

A.2.

The underlying search engine in the document store accepts search queries specified as JSON objects. The

Search endpoint is on /api/search path and it accepts POST requests through JSON query in the request

body. The format of these queries is specified in Elasticsearch Query DSL, and it supports many options to

control the result matching, filtering, paging, etc. More details on common queries and a request example can

be found in Appendix A.3. Search results are served in an abbreviated form in a JSON array. Each element

contains the following fields:

 docid - document ID;

 title - innovation title;

 summary - innovation description, shortened;

 pictures - the array of URLs of the attached pictures from the _pictures property.

The results are sorted by relevance score, and the main intended use for these data are to be rendered on

the search results page and to provide enough information to link to the full document behind the match.

Administrative operations on the document store service include system User administration. These are the

users who can access the REST API, and their access is controlled by ACL's rules on API paths. The

authorization rules are configured in the auth_model.conf and policy.csv files, which are outside the scope of

the REST API. A user entity contains the following fields:

 username - unique username;

 password - only filled out on user creation or update, otherwise blank;

 role - role name that controls the authorization of the user;

 mail - mail address;

 active - boolean that specifies if the user is enabled.

The requests available for the users’ resource are:

11

 POST on /api/users creates a new user. The password in the request is expected to be in clear text

and it will be stored hashed on the backend. It will never be sent in a response to any other request,

it is only used for authenticating requests.

 GET on /api/users fetches the list of all system users, with password fields left blank.

 GET on /api/users/{username} fetches a specific user, also without a password.

 PUT on api/users updates a given user to the field values specified in a JSON object in the request

body. Updates are total, if any field is left blank or omitted, it will be cleared in the database as well.

More details and example requests and responses are given in Appendix A.4.

 Dynamic platform

The dynamic platform (https://scinno.ipb.ac.rs/) is a web frontend that enables read/write access to the

Document Store for the SMARTCHAIN hub managers and WP leaders. It is implemented in C++ using the Wt

web toolkit. The application provides a view to search and show results from the document store, and a

detailed view for specific documents that can be edited there. The dynamic platform search page is illustrated

in Figure 3, and a document page in Figure 4.

Figure 3: The dynamic platform search page.

https://scinno.ipb.ac.rs/

12

Figure 4: The dynamic platform document page.

13

4. Initial data collection

The initial data for the Innovation database was collected using a questionnaire filled out by the SMARTCHAIN

hub managers and WP leaders. The questionnaire (given in Appendix B) contains a minimum set of information

that describes an innovation, in particular:

 title of the innovation;

 picture that visually describes the innovation;

 type of innovation, whether it is technological, social, environmental, etc.;

 end users who might be interested in the innovation;

 short summary for practitioners;

 website for additional information;

 countries of origin;

 documents and publications;

 technology readiness level;

 people involved, who are able to provide additional information and support.

Besides this basic set of metadata, additional information is supplied in the form of documents, papers, external

websites, etc. At the moment, the survey collected over 18 descriptions of innovations ranging from agriculture

monitoring drones to new types of cheese. All this information was indexed and stored in the SMARTCHAIN

document store.

Additional data is expected to be incorporated in the dynamic platform soon based on the more than 110

descriptions of innovations prepared by WP2 (Tech- and non-technological innovations).

14

5. Conclusions

As it is described in the SMARTCHAIN DoA, the project aims to foster and accelerate the shift towards

collaborative short food supply chains and to introduce new robust business models and innovative practical

solutions that enhance the competitiveness and sustainability of the European agri-food system. This is realized

by the analysis of the technological and non-technological (WP2), social (WP3), consumer (WP4),

environmental (WP5), and business and policy (WP7) specific factors related to short food supply chains, which

will result in identification of the key parameters that influence sustainable food production and rural

development.

The WP6 supports these activities by developing a virtual environment for knowledge transfer, innovation, and

cooperation for all the stakeholders of the short food supply chain. From the beginning of the project, we have

expected a lot of unstructured information to be stored within the inventory system. Therefore, to enable an

efficient search for large quantities of unstructured data, we have created the index that holds searchable

information extracted from documents or manually uploaded to the system. It is organized to support full-text

search on every available piece of information. We have identified available open source solutions that could

be reused for project purposes and developed a set of related tools that orchestrate the workflow in a seamless

manner.

In this document, we have reported technical details of the frontend and backend components. The central

part of the system is the document store that integrates all components within the SMARTCHAIN inventory of

innovations, and the REST API that allows frontend components to consume the service. In addition to these,

we have documented the dynamic platform, which demonstrates usage of the provided REST API, and the

initial database population.

15

A. REST API specification

This appendix gives a more technical specification of the developed SMARTCHAIN REST API. Up to date version

of this specification can be found at https://scinno.ipb.ac.rs/api.html.

A.1 Documents

https://scinno.ipb.ac.rs/api.html

16

17

A.2 Attachments

18

A.3 Search

19

A.4 Administrative

20

B. Innovation Description Template

21

22

References

[1] Project SMARTCHAIN 773785 – Annex I - Description of the action.

[2] SMARTCHAIN D6.2 – Design of the inventory of innovations and related interactive tools.

[3] R. Gheorghe, M. L. Hinman, and R. Russo, Elasticsearch in Action, Manning Publications (2015).

[4] Official Elasticsearch webpage, https://www.elastic.co/.

[5] J. Zitting and C. Mattmann, Tika in Action, Manning Publications (2011).

[6] Apache Tika - a content analysis toolkit, https://tika.apache.org/.

[7] LevelDB - fast key-value storage library, https://github.com/google/leveldb.

[8] Casbin - authorization library, https://casbin.org/.

[9] A. A. A. Donovan, B. W. Kernighan, The Go Programming Language, Addison-Wesley (2015).

[10] S. V. Chekanov, Numeric Computation and Statistical Data Analysis on the Java Platform, Springer
(2016).

[11] O. Gospodnetic, E. Hatcher, Lucene in Action, Manning Publications (2010).

https://www.elastic.co/
https://tika.apache.org/
https://github.com/google/leveldb
https://casbin.org/

